天线效应及其解决方法

“天线效应”的图片搜索结果

天线效应的产生粗略的讲就是金属表面积累的电荷过多,但又无法形成对地的放电通路,结果很有可能是对栅氧造成破坏。由于现代工艺尺寸越来越先进,沟道长度越来越小,antena的问题就越来越受重视。通常,我们通过金属跳线或者在poly-gate旁边放置足够面积的diode可以避免天线效应的发生。但是金属该往上跳还是往下跳呢?

我们都知道做mask的时候是从低层往高层做的。每一道工序都有诸如平坦化,隔离等,之后肯定会有静电泄放的操作。从这个角度来说,假如metal3过大有antena的问题,我们用metal4对其跳线。在做metal3的mask时,metal3实际上分开的,只有做到metal4的时候他们才会连起来,而到metal4时,metal3的表面电荷已经由于工艺过程减少很多了;而如果用metal2对其跳线,在做metal3时,metal2和metal3是会相连的,并没有起到减少电荷的作用。

栅氧漏电,尽管对功耗不利,但对天线效应是有利的。栅氧漏电可以防止电荷积累达到击穿。所以,实际上可以看到薄的栅氧较厚栅氧不易发生损坏,因为当栅氧变薄,漏电是指数上升的,而击穿电压是线性下降的。

常用的三个避免天线效应的方法

  1. 跳线,而且最好是往上跳线
  2. 增加对地反向偏置diode,
  3. 在信号线上加一组buffer,这个方法既可以规避antena,也可以为信号增加驱动能力

一般来说command file会定义检查是否antena metal连到gate-poly上,还有是否面积过大。解决方法我建议是在靠近gate-poly的地方断开metal用高层metal跳一下,当然这在drc中可能不太好查,所以drc一般规定在发生antena的metal上有一个N-diode,越靠近transistor越好。

Calibre LVL脚本

mentor-graphics-calibre

  • 新建一个文件比如runlvl添加以下命令,把A和B的gds name和top cell name分别代入
\rm -rf *rpt *report
dbdiff -system GDS -design ./A.GDS TOP_CELL_NAME_A -refdesign ./B.GDS TOP_CELL_NAME_B -report my.rpt -turbo 4 -comparetext -report my.report -rdb my.rdb -sortlayer | tee log
dbdiff -system GDS -design ./A.GDS TOP_CELL_NAME_A -refdesign ./B.GDS TOP_CELL_NAME_B -comparetext -write_xor_rules my.xor
  • 运行runlvl
runlvl
  • 产生一个my.xor的文件,执行
calibre -drc my.xor
  • 运行完成后生成my.xor.asc这个文件是可以在calibre RVE中读取的文件,my.report这是报告文件,text层的内容更改也会显示在内。