干细胞基础知识

干细胞的种类

干细胞的概念:干细胞是一类具有自我更新和分化潜能的细胞。它包括胚胎干细胞和成体干细胞。干细胞的发育受多种内在机制和微环境因素的影响。目前人类胚胎干细胞已可成功地在体外培养。最新研究发现,成体干细胞可以横向分化为其他类型的细胞和组织,为干细胞的广泛应用提供了基础。
在胚胎的发生发育中,单个受精卵可以分裂发育为多细胞的组织或器官。在成年动物中,正常的生理代谢或病理损伤也会引起组织或器官的修复再生。胚胎的分化形成和成年组织的再生是干细胞进一步分化的结果。胚胎干细胞是全能的,具有分化为几乎全部组织和器官的能力。而成年组织或器官内的干细胞一般认为具有组织特异性,只能分化成特定的细胞或组织。
然而,这个观点目前受到了挑战。 最新的研究表明,组织特异性干细胞同样具有分化成其他细胞或组织的潜能,这为干细胞的应用开创了更广泛的空间。
干细胞具有自我更新能力(Self-renewing),能够产生高度分化的功能细胞。干细胞按照生存阶段分为胚胎干细胞和成体干细胞 。

1.1
胚胎干细胞 胚胎干细胞(Embryonic Stem cell, ES细胞) 当受精卵分裂发育成囊胚时,内层细胞团(Inner Cell
Mass)的细胞即为胚胎干细胞。胚胎干细胞具有全能性,可以自我更新并具有分化为体内所有组织的能力。早在1970年Martin
Evans已从小鼠中分离出胚胎干细胞并在体外进行培养。而人的胚胎干细胞的体外培养直到最近才获得成功。
进一步说,胚胎干细胞(ES细胞)是一种高度未分化细胞。它具有发育的全能性,能分化出成体动物的所有组织和器官,包括生殖细胞。研究和利用ES细胞是当前生物工程领域的核心问题之一。ES细胞的研究可追溯到上世纪五十年代,由于畸胎瘤干细胞(EC细胞)的发现开始了ES细胞的生物学研究历程。
目前许多研究工作都是以小鼠ES细胞为研究对象展开的,如:德美医学小组在去年成功的向试验鼠体内移植了由ES细胞培养出的神经胶质细胞。此后,密苏里的研究人员通过鼠胚细胞移植技术,使瘫痪的猫恢复了部分肢体活动能力。随着ES细胞的研究日益深入,生命科学家对人类ES细胞的了解迈入了一个新的阶段。在98年末,两个研究小组成功的培养出人类ES细胞,保持了ES细胞分化为各种体细胞的全能性。这样就使科学家利用人类ES细胞治疗各种疾病成为可能。然而,人类ES
细胞的研究工作引起了全世界范围内的很大争议,出于社会伦理学方面的原因,有些国家甚至明令禁止进行人类ES细胞研究。无论从基础研究角度来讲还是从临床应用方面来看,人类ES细胞带给人类的益处远远大于在伦理方面可能造成的负面影响,因此要求展开人类ES细胞研究的呼声也一浪高似一浪。
1.2 成体干细胞 adult stem cell:
成年动物的许多组织和器官,比如表皮和造血系统,具有修复和再生的能力。成体干细胞在其中起着关键的作用。在特定条件下,成体干细胞或者产生新的干细胞,或者按一定的程序分化,形成新的功能细胞,从而使组织和器官保持生长和衰退的动态平衡。过去认为成体干细胞主要包括上皮干细胞和造血干细胞。最近研究表明,以往认为不能再生
的神经组织仍然包含神经干细胞,说明成体干细胞普遍存在,问题是如何寻找和分离各种组织特异性干细胞。成体干细胞经常位于特定的微环境中。微环境中的间质细胞能够产生一系列生长因子或配体,与干细胞相互作用,控制干细胞的更新和分化。
1.3 造血干细胞 hemopoietic stem cell
造血干细胞是体内各种血细胞的唯一来源,它主要存在于骨髓、外周血、脐带血中。今年年初,协和医大血液学研究所的庞文新又在肌肉组织中发现了具有造血潜能的干细胞。造血干细胞的移植是治疗血液系统疾病、先天性遗传疾病以及多发性和转移性恶性肿瘤疾病的最有效方法。
在临床治疗中,造血干细胞应用较早,在20世纪五十年代,临床上就开始应用骨髓移植(BMT)方法来治疗血液系统疾病。到八十年代末,外周血干细胞移植(PBSCT)技术逐渐推广开来,绝大多数为自体外周血干细胞移植(APBSCT),在提高治疗有效率和缩短疗程方面优于常规治疗,且效果令人满意。与两者相比,脐血干细胞移植的长处在于无来源的限制,对HLA配型要求不高,不易受病毒或肿瘤的污染。
在今年初,东北地区首例脐血干细胞移植成功,又为中国造血干细胞移植技术注入新的活力。随着脐血干细胞移植技术的不断完善,它可能会代替目前APBSCT的地位,为全世界更多的血液病及恶性肿瘤的患者带来福音
1.4 神经干细胞
关于神经干细胞研究起步较晚,由于分离神经干细胞所需的胎儿脑组织较难取材,加之胚胎细胞研究的争议尚未平息,神经干细胞的研究仍处于初级阶段。理论上讲,任何一种中枢神经系统疾病都可归结为神经干细胞功能的紊乱。脑和脊髓由于血脑屏障的存在使之在干细胞移植到中枢神经系统后不会产生免疫排斥反应,如:给帕金森氏综合症患者的脑内移植含有多巴胺生成细胞的神经干细胞,可治愈部分患者症状。除此之外,神经干细胞的功能还可延伸到药物检测方面,对判断药物有效性、毒性有一定的作用。
实际上,到目前为止,人们对干细胞的了解仍存在许多盲区。2000年年初美国研究人员无意中发现在胰腺中存有干细胞;加拿大研究人员在人、鼠、牛的视网膜中发现了始终处于“休眠状态的干细胞”
;有些科学家证实骨髓干细胞可发育成肝细胞,脑干细胞可发育成血细胞。
随着干细胞研究领域向深度和广度不断扩展,人们对干细胞的了解也将更加全面。21世纪是生命科学的时代,也是为人类的健康长寿创造世界奇迹的时代,干细胞的应用将有广阔前景。

内源性调控

干细胞应用的基础——调控。干细胞的调控是指给出适当的因子条件,对干细胞的增值和分化进行调控,使之向指定的方向发展。

2.1 内源性调控
干细胞自身有许多调控因子可对外界信号起反应从而调节其增殖和分化,包括调节细胞不对称分裂的蛋白,控制基因表达的核因子等。另外,干细胞在终末分化之前所进行的分裂次数也受到细胞内调控因子的制约。
(1)细胞内蛋白对干细胞分裂的调控
干细胞分裂可能产生新的干细胞或分化的功能细胞。这种分化的不对称是由于细胞本身成分的不均等分配和周围环境的作用造成的。细胞的结构蛋白,特别是细胞骨架成分对细胞的发育非常重要。如在果蝇卵巢中,调控干细胞不对称分裂的是一种称为收缩体的细胞器,包含有许多调节蛋白,如膜收缩蛋白和细胞周期素A。收缩体与纺锤体的结合决定了干细胞分裂的部位,从而把维持干细胞性状所必需的成分保留在子代干细胞中。
(2)转录因子的调控
在脊椎动物中,转录因子对干细胞分化的调节非常重要。比如在胚胎干细胞的发生中,转录因子Oct4是必需的。Oct4是一种哺乳动物早期胚胎细胞表达的转录因子,它诱导表达的靶基因产物是FGF-4等生长因子,能够通过生长因子的旁分泌作用调节干细胞以及周围滋养层的进一步分化。Oct4缺失突变的胚胎只能发育到囊胚期,其内部细胞不能发育成内层细胞团[1]。另外白血病抑制因子(LIF)对培养的小鼠ES细胞的自我更新有促进作用,而对人的成体干细胞无作用,说明不同种属间的转录调控是不完全一致的。又如Tcf/Lef转录因子家族对上皮干细胞的分化非常重要。Tcf/Lef是Wnt信号通路的中间介质,当与β-Catenin形成转录复合物后,促使角质细胞转化为多能状态并分化为毛囊。
2.2 外源性调控 除内源性调控外,干细胞的分化还可受到其周围组织及细胞外基质等外源性因素的影响。

(1)分泌因子
间质细胞能够分泌许多因子,维持干细胞的增殖,分化和存活。有两类因子在不同组织甚至不同种属中都发挥重要作用,它们是TGFβ家族和Wnt信号通路。比如TGF家族中至少有两个成员能够调节神经嵴干细胞的分化。最近研究发现,胶质细胞衍生的神经营养因子(GDNF)不仅能够促进多种神经元的存活和分化,还对精原细胞的再生和分化有决定作用。GDNF缺失的小鼠表现为干细胞数量的减少,而GDNF的过度表达导致未分化的精原细胞的累积[3]。Wnts的作用机制是通过阻止β-Catenin分解从而激活Tcf/Lef介导的转录,促进干细胞的分化。比如在线虫卵裂球的分裂中,邻近细胞诱导的Wnt信号通路能够控制纺锤体的起始点和内胚层的分化。
(2)膜蛋白介导的细胞间的相互作用
有些信号是通过细胞-细胞的直接接触起作用的。β-Catenin就是一种介导细胞粘附连接的结构成分。除此之外,穿膜蛋白Notch及其配体Delta或Jagged也对干细胞分化有重要影响。在果蝇的感觉器官前体细胞,脊椎动物的胚胎及成年组织包括视网膜神经上皮、骨骼肌和血液系统中,Notch信号都起着非常重要的作用。当Notch与其配体结合时,干细胞进行非分化性增殖;当Notch活性被抑制时,干细胞进入分化程序,发育为功能细胞[4]。
(3)整合素(Integrin)与细胞外基质
整合素家族是介导干细胞与细胞外基质粘附的最主要的分子。整合素与其配体的相互作用为干细胞的非分化增殖提供了适当的微环境。比如当β1整合素丧失功能时,上皮干细胞逃脱了微环境的制约,分化成角质细胞。此外细胞外基质通过调节β1整合素的表达和激活,从而影响干细胞的分布和分化方向。
2.3 干细胞的可塑性
越来越多的证据表明,当成体干细胞被移植入受体中,它们表现出很强的可塑性。通常情况下,供体的干细胞在受体中分化为与其组织来源一致的细胞。而在某些情况下干细胞的分化并不遵循这种规律。1999年Goodell等人分离出小鼠的肌肉干细胞,体外培养5天后,与少量的骨髓间质细胞一起移植入接受致死量辐射的小鼠中,结果发现肌肉干细胞会分化为各种血细胞系。这种现象被称为干细胞的横向分化(trans-differentiation)[5]。关于横向分化的调控机制目前还不清楚。大多数观点认为干细胞的分化与微环境密切相关。可能的机制是,干细胞进入新的微环境后,对分化信号的反应受到周围正在进行分化的细胞的影响,从而对新的微环境中的调节信号做出反应。

干细胞应用平台技术

干细胞应用平台技术|3.1技术原理:在细胞的分化过程中,细胞往往由于高度分化而完全失去了再分裂的能力,最终衰老死亡。机体在发展适应过程中为了祢补这一不足,保留了一部分未分化的原始细胞,称之为干细胞(stem
cell)。一旦生理需要,这些干细胞可按照发育途径通过分裂而产生分化细胞,也可以这样说,这些干细胞充当了分化细胞‘预备队’的角色。在动物体中,多数组织含有干细胞,甚至在进化的早期,最初级的后生动物-海绵也含有称之为`始祖母细胞`的干细胞。
干细胞有以下特点: (1)干细胞本身不是处于分化途径的终端。 (2)干细胞能无限的增殖分裂。
(3)干细胞可连续分裂几代,也可在较长时间内处于静止状态。 (4)干细胞通过两种方式生长
,一种是对称分裂——形成两个相同的干细胞,另一种是非对称分裂——由于细胞质中的调节分化蛋白不均匀地分配,使得一个子细胞不可逆的走向分化的终端成为功能专一的分化细胞;另一个保持亲代的特征,仍作为干细胞保留下来。分化细胞的数目受分化前干细胞的数目和分裂次数控制。可以说,干细胞是具多潜能和自我更新特点的增殖速度较缓慢的细胞。
公司的干细胞应用平台技术 3.2 技术方向
按分化潜能的大小,干细胞基本上可分为三种类型:一类是全能性干细胞,它具有形成完整个体的分化潜能。如胚胎干细胞(简称ES细胞),它是从早期胚胎的内细胞团分离出来的一种高度未分化的细胞系,具有与早期胚胎细胞相似的形态特征和很强的分化能力,它可以无限增殖并分化成为全身200多种细胞类型,进一步形成机体的所有组织、器官。另一类是多能性干细胞,这种干细胞具有分化出多种细胞组织的潜能,但却失去了发育成完整个体的能力,发育潜能受到一定的限制,骨髓多能造血干细胞是典型的例子,它可分化出至少十二种血细胞,但不能分化出造血系统以外的其它细胞。还有一类干细胞为单能干细胞(也称专能、偏能干细胞),这类干细胞只能向一种类型或密切相关的两种类型的细胞分化,如上皮组织基底层的干细胞、肌肉中的成肌细胞或叫卫星细胞。
总之,凡需要不断产生新的分化细胞以及分化细胞本身不能再分裂的细胞或组织都要通过干细胞所产生的具有分化能力的细胞来维持机体细胞的数量,可以这样说,生命体是通过干细胞的分裂来实现细胞的更新及保证持续生长。随着基因工程、胚胎工程、细胞工程等各种生物技术的快速发展,按照一定的目的,在体外人工分离、培养干细胞已成为可能,利用干细胞构建各种细胞、组织、器官作为移植器官的来源,这将成为干细胞应用的主要方向。
3.3 技术突破 最近干细胞的研究有两个重大的技术突破,一是人类胚胎干细胞在体外培养成功。1998年Wisconsin大学的James
Thomson和Johns Hopkins大学的John
Gearhart从人囊胚的内层细胞团中取得胚胎干细胞。他们把胚胎干细胞与小鼠的骨髓间质细胞进行了共培养。结果表明胚胎干细胞可以进行长达5个月的非分化增殖,同时还保持着分化为滋养层组织及三种胚层组织的能力。这为胚胎干细胞的临床应用奠定了基础。另外一个重大突破是成体干细胞的横向分化。1999年Goodell等人用肌肉来源的干细胞在小鼠体内分化成各种血细胞。这表明成体干细胞在一定的微环境的作用下,可以横向分化为需要的细胞和组织,从而起到极其有效的治疗作用。
我们所掌握的干细胞技术主要包括以下两大方面 3.4 干细胞的分离与纯化
干细胞表面有许多特殊的标记,以造血系统为例,干细胞的表面标志有Sca-1和c-kit等。另外各种成体干细胞还有各自独特的标记物,如人造血干细胞表现为CD34+和Thylo而CD10,CD14,CD15,CD16,CD19,CD20皆为阴性[8]。这些特异的标记物可能与其分化调控有关,如上皮干细胞有β1整合素的高表达,而β1整合素可介导干细胞与细胞外基质粘附从而抑制其分化的发生。另外干细胞还有不同于一般分化细胞的物理特性,比如干细胞不被染料Hoechst33324和Rhodamine123染色。利用这些特性及表面标志,采用荧光细胞分离器从单细胞悬液中即可分离纯化干细胞。
3.5 干细胞的体外培养
由于干细胞的数目很少,因此需要在体外对干细胞进行非分化性增殖。这需要许多生长因子和间质细胞的共培养。Brustle等人在体外成功地培养了鼠的ES细胞。他们首先把分离的ES细胞在含有FGF2的培养基中培养,随后加入上皮生长因子(EGF),最后在FGF2和PDGF的混合培养基中生长增殖。在这种培养条件下,ES细胞可以保持其分化潜能,如停止供给生长因子,ES细胞会分化为寡树突细胞或星状细胞[9]。不同组织来源的干细胞的培养条件不尽相同。在应用前还需依据靶组织类型对培养干细胞进行定向分化诱导。准确的分化诱导是应用干细胞治疗的基础。这需要对与干细胞发育有关的信号调节及微环境的影响进行详细研究。

干细胞技术的市场前景

干细胞技术的市场前景:研究干细胞增殖和分化机制的最终目的是应用干细胞治疗疾病。理论上讲,干细胞可以用于各种疾病的治疗,但其最适合的疾病主要是组织坏死性疾病如缺血引起的心肌坏死,退行性病变如帕金森综合征,自体免疫性疾病如胰岛素依赖型糖尿病等。
4.1 优点明显 应用干细胞治疗疾病较传统方法具有很多优点: 低毒性(或无毒性),一次药有效; 不需要完全了解疾病发病的确切机理;
还可能应用自身干细胞移植,避免产生免疫排斥反应。 用干细胞治疗疾病已不再只是设想。 4.2 革命性的机制转变
利用胚胎干细胞治疗疾病有广泛的应用前景,但是干细胞应用在欧美却受到社会伦理学的制约,并且在实际应用中还不能避免免疫排斥。因此横向分化的发现在干细胞研究中具有革命性意义。它打破了用于临床治疗的干细胞只能来源于胚胎或受精卵的限制,为干细胞治疗疾病提供了新途径。人们可望从自体中分离出成体干细胞,在体外定向诱导分化为靶组织细胞并保持增殖能力,将这些细胞回输入体内,从而达到长期治疗的目的。
4.3 体外制造人体器官
干细胞的医学应用还包括体外制造人体器官,然而这比体内移植干细胞要复杂得多。干细胞和动物工程的结合将有可能解决这一问题。比如通过形成嵌合体,在严格的控制下,使动物的某些器官来源于人体干细胞。这些来自人体干细胞的器官可应用于临床移植治疗。干细胞的医学应用无疑是对传统治疗方式的一场革命。正因为如此,以干细胞应用为主体的众多生物技术公司在西方国家迅速成立并得到人们的普遍关注。可以预测在不久将来,我们的干细胞研究和应用也会得到迅速的发展并在国际舞台上占有一席之地。
4.4 长生不老的希望 目前科学家已能在体外以干细胞为种子培育成功一些组织器官,来替代病变或衰老的组织器官。假如在
年老时能使用上自己或他人婴幼儿或青年时期采集保存的干细胞及其衍生组织,那么人类长期追求的长生不老和幻想就有可能成为现实。造血干细胞移植是目前治愈白血病和某些遗传性血液病的惟一希望,在肿瘤和难治性免疫疾病的治疗中也有其独特的作用。

使用流式细胞分选技术分离肠道特异菌群

流式细胞术是一种综合应用光学、机械学、流体力学、电子计算机、细胞生物学、分子免疫学等学科技术, 对高速流动的细胞或亚细胞进行快速定量测定和分析的方法。流式细胞分选技术具有测量速度快、统计学精度高、可在分析的同时把具有指定特征的细胞分选出来等特点。流式细胞术也已成为生物学、药理学、毒理学、细菌学、病毒学、环境科学和生物工艺监控的有用工具。

在过去的几年中, 流式细胞术已成为研究细菌生长行为的一个重要工具。检测细菌产生胞内产物的能力。如Nile红染色用于检测PHB,PHB是含碳的能源, 并可被生物降解利用的一种热塑性聚合物。流式细胞分选技术一个重要应用是利用荧光标记的靶rRNA寡聚核苷酸探针进行原位杂交来鉴别并分选不同微生物。

%e4%bd%bf%e7%94%a8%e6%b5%81%e5%bc%8f%e7%bb%86%e8%83%9e%e5%88%86%e9%80%89%e6%8a%80%e6%9c%af%e5%88%86%e7%a6%bb%e8%82%a0%e9%81%93%e7%89%b9%e5%bc%82%e8%8f%8c%e7%be%a4a

技术路线

%e4%bd%bf%e7%94%a8%e6%b5%81%e5%bc%8f%e7%bb%86%e8%83%9e%e5%88%86%e9%80%89%e6%8a%80%e6%9c%af%e5%88%86%e7%a6%bb%e8%82%a0%e9%81%93%e7%89%b9%e5%bc%82%e8%8f%8c%e7%be%a4b

流式细胞分选技术在植物研究中的应用

  1. 植物细胞周期分析和分选

通过DNA染料可以分析G1期,S期,G2/M期细胞,从而了解植物细胞的生长代谢,并根据研究需要,分选得到纯化的G1期,S期,G2/M期细胞。

bio4

  1. 倍性分析

植物细胞核DNA含量和倍性水平是植物学研究做的重要基础指标,使用流式细胞技术可以快速准确地分析这些指标,了解种子,花粉精细胞等的倍性情况,由G1期细胞核DNA含量来反映细胞倍性。

  1. C值研究

生物体的单倍体基因组所含DNA总量称为C值。C值是一个很重要的植物学特征,成为植物学家进行种群进化、物种分类和生态学研究的有用分析工具和证据。由于近缘物种的C值极为相似,因而可以通过C值获取基因组大小这一特征信息,用于构建物种的系统进化树,分析亲缘关系,同时可以通过测定C值来鉴定杂交物种。借助植物学细胞C值与气孔保卫细胞长度、面积正相关的规律,通过测量植物化石的气孔长度和面积,可以用已知参考样本物种的C值推断出相应的古植物C值,用于古植物学研究。外来入侵种比同域分布的同属其它种有较小的C值,因此通过检测植物的C值,可以预测入侵能力的强弱,并以此作为生态学评估指标。

bio5

  1. 植物染色体的分析和分选

一般采用DNA荧光染料PI或DAPI,使用488nm激光器或UV激光器,可以分辨DNA含量相差2.5%的染色体组。2路分选出的单一类型的染色体。流式分选得到的高纯度染色体是构建染色体专性文库和植物基因定位的最好材料。同时利用流式细胞术分检纯化出的染色体在分子生物学后续研究领域有着广阔的应用前景,例如利用PCR技术进行物理图谱的绘制、FISH与PRINS遗传图谱的绘制、植物基因组的分析、染色体蛋白的免疫定位等。

  1. 荧光蛋白表达的分析和分选

绿色荧光蛋白 (green fluorescent protein,GFP) 作为一种新型的报告基因具有荧光稳定性好,检测简便,结果真实可靠,不需要任何外源底物或辅助因子的特点。自从20 世纪60年代出现以来,它已引起人们的广泛兴趣,目前已经应用于烟草、柑橘、拟南芥、玉米、水稻、大豆、苜蓿等多种植物材料的研究中。

GFP为植物细胞生物学的发展开创了新的领域。目前,GFP融合蛋白已成功地用于转基因植物研究、基因表达的调控效果研究、基因产物及基因定位研究、植物细胞骨架的动态变化、细胞器的动态和内膜系统的运输、病毒的运动和大分子的运输、完整植株的信号传导研究等研究中。

bio6

561nm激光应用

由于激光技术的发展,目前可供选择的激光器种类越来越多,我们可以根据实验需求(荧光素,染料)选择合适的激光,例如:488nm蓝色激光,640nm红色激光,355nm紫外激光,405nm紫色激光,561nm黄绿激光等。一般情况下,流式细胞仪都会标配488nm激光,用于激发最常用的荧光素或染料如FITC, PE,PI,GFP等。但随着PE系列荧光素的开发应用以及RFP系列荧光转染蛋白的应用,目前561nm的激光器在流式细胞仪特别是流式细胞分选仪应用越来越多,其主要特点有:

  1. 561nm激光检测RFP系列红色荧光转染蛋白

荧光蛋白作为分子标签,在分析生物技术和细胞内分子示踪方面具有广泛的

应用. 尤其是在细胞分子影像的应用方面,可以通过融合蛋白技术,将荧光蛋白融合到细胞内的某个靶标蛋白上,以标记和分析靶标蛋白在细胞内的定位、分布和运动以及与其他细胞内分子的相互作用.

克隆于珊瑚的荧光蛋白具有荧光光谱多样性。既有绿色,也有黄色,且有各类红色。不同野生型的红色荧光蛋白经过一系列体外进化,得到各种不同发射波长的突变体。1999 年报道了第一个红色荧光蛋白 drFP583(DsRed),其优点显而易见:可与 GFP 系列荧光蛋白共用,且激发和发射波长更长,细胞内成像背景低,因此迅速被关注. 短短数年,对红色荧光蛋白的一系列研究,极大地丰富了荧光蛋白的光谱多样性,为细胞内的多色标记提供了更多的荧光标记。

561nm%e6%bf%80%e5%85%89%e5%ba%94%e7%94%a8a

从RFP系列荧光蛋白的激发波长(Ex)来看,561nm是激发红色荧光蛋白的最佳波长激光器,并且与488nm和532nm同时比较灵敏度指数(Sensitivity Index),561nm激光器的灵敏度最高,如下图:

SI=(median fluorescent cells – median non-expressing cells)/(robust SD)

robust SD=(84 percentile non-expressing cells)/(median non-expressing cells).

561nm%e6%bf%80%e5%85%89%e5%ba%94%e7%94%a8b

因此流式细胞分选仪配置561nm激光可以检测RFP转染效果并且分选出高纯度的RFP阳性细胞。

  1. 561nm激光可以更好的激发PE及PE系列染料,大大降低FITC与PE之间的补偿

PE和FITC是目前最常用的荧光素种类,通常用488nm蓝色激光激发。用561nm激光器激发PE,可极大提高PE、PE家族染料的检测灵敏度和分辨率,从而发现一些过去不能被发现的低表达细胞群体和特殊表面标志物。同时,用561nm激光激发PE,可大大减小PE与FITC的光谱重叠,免除荧光补偿调节的同时提高检测灵敏度和分辨率

使用488nm同时激发FITC和PE,需要进行补偿调节

561nm%e6%bf%80%e5%85%89%e5%ba%94%e7%94%a8c

A:使用488nm同时激发GFP和PE,需要进行补偿调节

B:使用488nm同时激发GFP和PE,基本无需补偿调节

561nm%e6%bf%80%e5%85%89%e5%ba%94%e7%94%a8d

使用488nm激发PE及PE系列荧光素

561nm%e6%bf%80%e5%85%89%e5%ba%94%e7%94%a8e

使用561nm激发PE及PE系列荧光素,灵敏度更高

561nm%e6%bf%80%e5%85%89%e5%ba%94%e7%94%a8f

  1. 使用561nm激光也可激发APC系列荧光素

虽然通常用640nm的红色激光器激发,但使用高功率的561nm激光器(如100mW)也可以很好的检测APC和APC系列荧光素。